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Abstract 

The role of invariance considerations in conventional formulations of Noether's theorem 
in classical field theory is investigated and found weaker than is usually supposed. It is 
shown how nonfulfilment of the conventional assumptions going into Noether's theorem 
brings about nonconservation. 

1. Introduction 

In recent work (Rosen, 1970) we radically generalized Noether 's  theorem 
in classical field theory so as to abolish the role of  invariance considerations 
in the theorem. In this article we investigate conventional formulations of  
Noether 's  theorem and especially the assumptions that go into them, for 
the purpose of  clarifying the role of  invariance considerations in these 
formulations. I t  is shown that to produce a continuity equation (from which 
a conservation law is obtainedt) it is insufficient that an infinitesimal trans- 
formation either be a symmetry transformation or leave the action invariant. 
Both properties must hold. This is not a new result and should be clear, 
for example, f rom Hill's (1951) exposition of Noether 's  theorem. On the 
other hand, we find, perhaps surprisingly, that even within conventional 
formulations Noether 's  theorem allows continuity equations to be associ- 
ated with transformations that are neither symmetry transformations nor 
leave the action invariant. We then generalize slightly and obtain a set of  
assumptions about the transformation, wider than the set of  assumptions 
going into conventional formulations but containing them, and a con- 
tinuity equation associated with each assumption. Finally we show how 
nonfulfilment of  the conventional assumptions brings about addition of a 
source term to what otherwise would have been a continuity equation (and 
therefore nonconservation of what otherwise would have been conserved). 

t We do not treat the step leading from continuity equations to conservation laws. 
See for example Bogoliubov & Shirkov (1959). 
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2. Transforma6ons 

Consider  a Lagrangian  density ~oP(x, p(x), alp(x)) which is a funct ion of  
the space-t ime coordinates  x = (xU),/L = 1, 2, 3, 4, the independent  fields 
p(x) = (pc(x)), i = 1 . . . . .  N, and the first derivatives of  the fields alp(x), 
where d = (do) = (d/dx o) denotes total  derivation with respect to x = (xO).t 
(All our  results are valid, with appropr ia te  generalizations, for  ~ a function 
also o f  higher-order  field derivatives up to any finite order.  Our  restriction 
here is only for  the sake of  clarity.) The summat ion  convention holds for 
space-t ime indices and for  field componen t  indices. 

The act ion functional  is 

Jv [~o] = f se(x, ~o(x), g~(x)),/4 x (2. 1 ) 
v 

where V is the volume of  integration. 
Consider  an arbi t rary infinitesimal t ransformat ion,  where the coordinates  

t rans form 
x -+ ~ = x + 3x(x) (2.2) 

the fields undergo a var ia t ion in their functional form:~ 

p(x) -+ p(x) = p(x) + ~p(x, p(x), alp(x) . . . .  ) (2.3) 

and the Lagrangian  density changes its functional fo rm 

~ ( x ,  ~(x), d~(x)) -+ P(x ,  ~c(x), d~(x)) 
= ~(x,~c(x), d~(x)) + $~(x,  ~(x), d~(x)) (2.4) 

Write 
~ = d r ~oLPl~ + 3=P2 (2.5) 

where d r ~.oPl u contains all divergence terms of  ~,P.  Since the g-variat ion 
of  p and ~a does not  involve a change of  x, we have that  ~ and d commute .  

The action t ransforms as 

Jr[P] --+ Jv[cp] = .I  ~9~(:~, ~(.~), alp(2)) d 4 2 (2.6) 
V 

We then have to first order  

= f [ ~ P ]  d 4 x (2.7) 
v 

where 

\ ~ P~ I 

"~ For example d,, p(x) = 0, p(x)and 4~,f (x, p(x)) = [0 u + (d~ PO O]Op,] f (x, p(x)). 
~; Note that ~p = g(2) - p(x) = 3p + (~x") 4,, p. 
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and 

E'  ~ =  ~ -  d ,  ~ (2.9) 

E ~ being the Euler-Lagrange operator for the field go~. The jacobian of 
transformation (2.2) is (1 + d~, 3x~') and was taken into account in deriving 
equations (2.7)-(2.9). 

The equations of motion are 

E t ~a o 0 (2.10) 

where g denotes equality holding when the fields go(x) satisfy the equations 
of motion. 

3. Noether' s Theorem 

One conventional formulation of Noether's theorem t involves two 
distinct assumptions: 

Assumption A. With respect to a transformation (2.2)-(2.5) the action is 
invariant for all volumes of integration, i.e., 3J = 0 for all V. From equation 
(2.7) this implies and is implied by 

[ ~ ]  = 0 (3.1) 

Equations (2.8) and (3.1) then give 

d . Z "  = -(~go~) E ~ ~ - 3 ~ 2  (3.2) 

where 
05r 

Z "  = ~ 3 x "  + ~ ~go~ + 8~'lu (3.3) 

up to a divergenceless vector. This assumption is realized by imposing a 
condition on ~a and its transformation (2.4), (2.5). From equations (2.1), 
(2.6), (2.7) a necessary and sufficient condition for this is 

~-0  ?, ~07), d-~0~)) d 4 )~ = ~(~a(x, go(x), dgo(x)) d 4 x (3.4) 

i.e., that ~a transform under transformation (2.2)-(2.5) as a scalar density. 

Assumption B. With respect to a transformation (2.2)-(2.5) the lagrangian 
density is form-invariant up to a divergence, i.e., 

~ ~  = 0 (3.5) 

i" See for example Hill (1951). 
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from equations (2.4), (2.5). Equations (3.2) and (3.5) then give the continuity 
equation-~ 

d . z ~ '  = - ( 8 ~ J  E ~ 

o__ 0 (3.6) 

with Z~ as above. Note that Assumption B is a sufficient, but not necessary, 
condition for form-invariance of  the equations of  motion (2.10).$ This is 
seen by applying the Euler-Lagrange operator E ~ to equations (2.4), (2.5) 
and using the identity (Courant & Hilbert, 1953) 

E ~ / $ ~ ' , u  = 0 (3.7) 

Form-invariance of  the equations of motion is often taken to characterize 
symmetry transformations. So if we ignore the nonnecessity of Assumption 
B for such form-invariance, then Assumption B is that the transformation 
be a symmetry transformation.w 

Thus Assumption A and Assumption B are together sufficient to produce 
continuity equation (3.6). But they are hardly necessary. An alternate 
conventional formulation of  Noether's theorem starts with a single assump- 
tion which is both necessary and sufficient for continuity equation (3.6). 
Rather than simply state this assumption, we derive it from Assumptions 
A and B to show its relation to them. 

Using the inverse jacobian relation 

d+x = (1 - .dut~x")d4.~. (3 .8 )  

rewrite equation (3.4) (Assumption A) as 

,~(ff, 9(32), ~ ( ~ ) )  d 4 .~ = ~ ( x ,  ~(x), d~(x)) (1 - dt~ ~x u) d 4 ~ (3.9) 

Substitute equation (3.5) (Assumption B) in equations (2.4), (2.5), take 
the transformed coordinates and fields (~,~(~)) for the arguments of  the 
functions, and multiply through by d4~ to obtain to first order 

~ ( ~ ,  c~(~'), ~ ( . ~ ) )  d 4 ~ = ~za(~, c~(~), ~--~(~')) d 4 ~ q- ~//~ ~(~1 ~a d 4 .~ 

= .~(~,  ~(~), ~ ( ~ ) )  d '  

+ ( d ~ , ~ ? ' )  (1 - d~, ~x~') d4 ~ (3.10) 

t Note that instead of equation (3.5) the weaker condition 3L~' 2 o 0 also gives a 
continuity equation. 

:~ A condition both necessary and sutticient is E t 3La2 =o 0. 
w In previous work (Rosen, 1970) we showed that the transformations leaving the 

equations of motion form-invariant do not exhaust the set of symmetry transformations. 
This, together with its nonnecessity for such form-invariance, actually makes Assumption 
B twice removed from assuming a symmetry transformation. 
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Since the left-hand sides of equations (3.9) and (3.10) are the same, equate 
their right-hand sides, cancel out d42, rearrange terms, and get 

Assumption C. 

~(2 ,  c~(2), g~0---(2)) = [~q~(x, q~(x), d~0(x)) - g ,  $~z, u] (1 - g ,  3x") (3.11) 

Continuity equation (3.6) is obtained directly from equation (3.11) by 
expanding the left-hand side about ~(x,~o(x) ,dq~(x))  and using equations 
(2.2), (2.3). Assumption C is weaker than Assumptions A and B together. 
$~c~a z does not appear in equation (3.11), so equation (3.5) needs not hold 
and S(' does not have to be form-invariant up to divergence, i.e., trans- 
formation (2.2)-(2.5) does not have to be a symmetry transformation. If in 
fact the transformation is not a symmetry transformation, then ~a will not 
be a scalar density, and instead of equation (3.4) we will have 

S?(~,~(:z),g~(~z))d+:z = [LZ(x,~(x),d~o(x)) + 8~2]d+x (3.12) 

with resulting noninvariance of the action 

= _~ ~"~2 d4 x (3.13) 8J 
V 

and 
[8~]  = $~2 (3.14) 

Equations (2.8) and (3.14) then reproduce 

t For example in Bacry et al. (1970). 
$ 8x = px. The jacobian is (1 § 4p). 
w For example in Bjorken & Drell (1965). 

20 

instead of equation (3.1). 
continuity equation (3.6), as consistency demands. 

Assumption C is not conveniently expressible in terms such as 'scalar 
density', 'form-invariance', or 'symmetry'. Stated verbally it is that the 
untransformed Lagrangian density taken as a function of the transformed 
coordinates and fields be equal to the same function of the untransformed 
coordinates and fields up to the inverse jacobian factor and a divergence 
term. Sometimes Assumption C is stated without the inverse jacobian 
factor.t Then unit jacobian (d,SxU=0) must be assumed, to enable 
derivation of a continuity equation. This is not valid for, say, dilation 
transformations.$ In many field theory texts the divergence term is deleted 
also.w 

So it is clear that even in a conventional formulation of Noether's theorem 
not only symmetry transformations produce associated continuity equa- 
tions; any transformation (2.2)-(2.5) obeying Assumption C does this. 
On the other hand, a transformation's being a symmetry transformation 
(Assumption B) is not in itself sufficient to produce a continuity equation, 
but it must also leave the action invariant (Assumption A). And neither is 
Assumption A sufficient in itself, but must be accompanied by Assumption 
B. 
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4. Further Considerations 

In this section we yield to that eternal temptation not to leave well 
enough alone, and we perform a slight generalization. By some additional 
manipulations it is possible to obtain a wider set of  assumptions about 
transformation (2.2)-(2.5), which includes Assumptions C and A + B, 
and an associated continuity equation for each assumption. To this end 
define 

~ o  = P(~ ,  r d~(~)) - ~ ( x ,  ~(x), d~(x))  

= ~ca(J?, cp(~), d~o(2)) - ~~ q~(x), d~0(x)) + ~,o (4.1) 

Expanding and using equations (2.2)-(2.5), we get 

( ~ -  ) 3~,~=(3xV)d,~g +($~o,)E'oC~ + d v O~,~ ~q~i + d u g ~ u + ~ P 2  (4.2) 

Manipulate this to obtain 

dv (~.(,~x v + ~ 0 ~  -~o, + ~ c(~ ~) 

= -(~q~i) E ~ 54' + ~ - ~ 2  + ~'~ Sx v (4.3) 

Now add d ,A" ,  with A u arbitrary, to each side, 

+ ~ ~q>~ + 3s + A"] 
\ 

I 

= - ( ~ )  E '  ~ + 3~P - g5r 2 + 5qd  u 3x" + ~/v A" (4.4) 

Then the condition 

3&o _ 3~2  + ~q-~dv SxU + alvA" = 0 (4.5) 

is sufficient for the continuity equation 

d,, W" = -(,~o3 E~ Se 

o 0 (4.6) 

to hold, where 
0=LP - 

W ~ = c~aSxU + ~ 8q~ + $~1"  + A ~ (4.7) 

up to a divergenceless vector. Equation (4.5) for all Au forms the set of 
assumptions mentioned above, and equation (4.6) with equation (4.7) is 
the continuity equation associated with each assumption. 

Assumption C is obtained from equation (4.5) by taking A" = 0 and 
using equations (4.1) and (2.5). Then equations (4.6), (4.7) become con- 
tinuity equation (3.6). Assumption C with divergence term deleted follows 
from equation (4.5) by taking AV=-8=~~ For unit jacobian put 
d .  ~x" == 0. 
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To obtain Assumptions A (in the form of equation (3.4)) and B from 
equation (4.5), just take A" = 0, as for Assumption C, and put g~2 = 0. 
Use equations (3.8) and (4.1) to see that this is equivalent to equation (3.4). 

Another possibility is 
A" = -~5e1~ - ~a3x~ (4.8) 

Then equation (4.5) becomes 

~q~ - ~ - (Sx t') d~ 5e = 0 (4.9) 

and the associated continuity equation is 

I a ~  ~ ~ 0 d (4.10) 

Equation (4.9) expresses invariance of ~o under variations in the functional 
form of q~(x), equation (2.3). This is appropriate to local field transforma- 
tions. 

The preceding slightly generalized formulation was developed for the 
purpose of expressing the set of assumptions, equation (4.5), in terms of 
8~,f. It is completely equivalent to modifying Assumption C, equation 
(3.11), by the addition o f - d u A "  to the right-hand side and obtaining the 
associated continuity equation as before. 

5. Nonconservation 

We return now to the conventional formulations of Noether's theorem 
and consider the noncontinuity equations associated with nonfulfilment 
of the conventional assumptions. Let the nonfulfilment of Assumption C, 
equation (3.11), be expressed by 

~( .~ ,  ~(.X'), d'~(~')) = [ ~ ( X ,  (j0(X), ~/~0(X)) -- z~/~z ~'~1/~ -}- A] (l  -- ,6~/~ ~X/a) (5.1) 

where A contains no divergence terms. Instead of continuity equation (3.6) 
we then have the divergence equation with source 

d u Z .  = - (~%)E ~ ~ + A 

o A (5.2) 

where Z~ is given by equation (3.3) up to a divergenceless vector. 
Let the nonfulfilment of Assumption A be 

3J=  f A a d 4 x  (5.3) 
V 

for all V, where AA does not contain a divergence term, or equivalently 

[SSe] = Aa (5.4) 
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instead o f  equation (3.1), or  equivalently 

2 ( ~ ,  ~(~Z), d--~(~)) d 4 ~Z = [Lee(x, ~(x), dcp(x)) + Aa] d 4 x (5.5) 

instead o f  equat ion (3.4). And  let the nonfulfilment o f  Assumpt ion B, 
equat ion (3.5), be 

85e2 = AB (5.6) 

where AB contains no divergence term. The resulting divergence equat ion 
with source is then 

d , Z  t' = -(~r ~ + Aa - An 

o Aa - An (5.7) 

with Z "  as above. As we saw in Section 3, when the nonfulfilments o f  
Assumpt ions  A and B are correlated through Aa = An, continuity equation 
(3.6) is recovered. 
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